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Boundary Element Method Approach to
Magnetostatlc Wave Problems

KEN’ICHIRO YASHIRO, MEMBER, IEEE, MORIYASU MIYAZAKI,
AND SUMIO OHKAWA, SENIOR MEMBER, IEEE

Abstract —In this paper, the technique for application of the boundary
element method (BEM) to analysis of magnetostatic waves (MSW’s) is
established. To show the availability of the technique, two types of wave-
guides for the MSW are studied; one is a waveguide constituting a YIG
stab shielded with metal plates and the other is a waveguide consisting of an
unshielded YIG slab. With the former structure the results obtained by the
present technique are compared with the analytical solutions, and with the
latter the BEM is compared with Marcatili’s -approximate method since
there is no analyﬁcal solution in tlus case. Those comparisons are per-
formed successfully for both cases.’

The paper concludes that the BEM is useful and effective for analySIS of
a w1de range of MSW problems
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I. INTRODUCTION

EVERAL TYPES OF waveguides for magnetostatic

waves (MSW’s) have so far been proposed and solved
analytically [1]-[3]. Most of them, however, have a simple
geometry; as a matter of fact, we may say that an analyti-
cal solution can be given only for structures of simple
geometry. But from the practical point of view, a numerical
solution which can be applied to arbitrary structures is
required for an analysis of the MSW problems.

The integral equation formulation has proved to be a
powerful tool for obtaining rigorous solutions of electro-
magnetic and acoustic wave problems. The boundary ele-
ment method (BEM) [4]-[6] is often used for the calcula-
tion of scattering and propagation problems. The BEM is
one representative of integral methods and is equivalent to

0018-9480 /85 /0300-02483%01.00 ©1985 IEEE
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Fig. 1. Two-dimensional model. H, is a biasing magnetic field.

the moment method with subsectional bases and Dirac
delta functions as testing functions [7]. In this paper, a
general computer program is developed for solving a wide
range of MSW problems.

For the purpose of analysis of waveguides for MSW’s,
the authors have established an approach using the BEM.
First, the boundary integral equation for the MSW prob-
lem is derived and the fundamental solution which is
defined as a solution in infinite space corresponding to a
point source is obtained. ‘

Subsequently, we have dispersion curves and magnetic
potential distributions of magnetostatic surface waves
(MSSW’s) for two different types of waveguides, i.e., a
shielded YIG slab and an unshielded YIG slab. For the
former structure, a good agreement with the analytical
solution [1], {8], [9] is shown, and for the latter a compari-
son with the solution by Marcatili’s approximate method
[10] is also shown to give reasonable agreement.

1I. FORMULATION

When a biasing magnetic field, which is assumed to be
uniform for mathematical simplicity, is applied to yttrium
iron garnet (YIG) along the z-axis, MSW can propagate
along the y-axis, as shown in Fig. 1. Assuming a quasistatic
approximation and that the MSW varies as
o(x, z)e/“ =P the magnetic potential of the MSW ¢
satisfies the following equation:

2
3% L9 ‘¢ (1)
x? 9z 2

where p is the diagonal component of tensor permeability
of YIG.

By using Green’s formula, the potential at the arbitrary
point P, inside region A is given as

¢ ¢ )
= I T he. i
¢(Pl) j;fi’z(lu‘axnx+ aznz dr
39 9¢f
_L¢(” Ix n,+t Jz n,
where I is a boundary contour around the region 4, n (n,)

is the x (z) component of the unit normal vector # to T,
and ¢F is a fundamental solution, which is

20 \/— O(Br

following the usual manner [11] for the case of MSSW,
where

p— LB’ =0

dT' (2)

oF = (3)

P O P @)
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Fig. 2. Expanded view in the vicinity of P, when P, is on the boundary.
T is a indented integral contour, where the distance from P, to T, is €.

and K|, is the zeroth-order modified Bessel function of the
second kind. If P, is on the boundary, (2) leads to the

1

following boundary integral equation:

3 ?
C'¢(P,)=fr¢:"(u£nx+a—fnz

~L¢(u?§znx+

)dI‘

t 3
—a‘i’—'n_,) ar ()

where C' is given by

C'=1- —2}— {tan™*(y/p tan6,)—tan~"(/ tan8,)}. (6)

Here 6, and 6, are angles between the x-axis and the
tangent to the boundary at P, as illustrated in Fig. 2, and
tan~!x means a normal value, i.e., tan~ix = no +Tan " x
(Tan ™ x; principal value).

Though (5) is a usual expression for the boundary in-
tegral equation, it is inconvenient for putting in the
boundary conditions for the present case. Thus, we use a
technique of adding/subtracting ¢o¢fxBn, to/from the
integrand in the right-hand side of (5), where k is an
off-diagonal component of tensor permeability. As a result,
we obtain the desirable boundary integral equation as
follows:

C'9(P) = [91qdT = [9g*dT (7)

where

a d
q= (”‘5;2 - Kﬁ¢)nx + %nz

¢*
qr = (

g and g* mean the normal components of the magnetic
flux density. The boundary conditions are introduced
through the values of ¢ and ¢ along the boundary contour.

The next step is to discretize (7). For this purpose, divide
the boundary I' into N elements so that (7) becomes

C'o(P,) = Z f¢*qdr Z f¢q*dr

,3<15*)n + 8;*

(8)

where the observation pomt P, coincides with the ith
boundary node. If we apply linear elements to (8), ¢, ¢, x,
and z on jth element are expressed as follows:

‘15(5) = l1’1‘15, + ‘P2¢,+1
q(&) =419, + ¥2q,41
x(§) = 1P1x, + ¢2xj+1
2(§) =1z, + ¥,z

(9)
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where ¢, and g, are ¢ and g at the jth boundary node,
respectively. i, and ¢, are called interpolation functions
which are defined for convenience of numerical integration
as follows:

‘P1(5)= -¢ i<
Ya(8)=¢ } (O<é<l)

in the case where the boundary element T, (j=i) includes
the observation point P,, and

v, (§)=(1-¢),2 e
1I/z(~‘§)=(1+§)/2} (-1<é<1) (11)

for an integral along the element T', which does not include
the point P,. Substituting (9) into (8) leads to

(10)

Z = Z G,q, (12)
=1
where
H,=[ 447 dr+f¢1q,* dr +C's,
(13)

I
frj ¢:"df+frj¢1¢:‘d1‘

1

Most of the integrations in (13) can be calculated using the
Gaussian integration formula. But an integration where its
path includes an observation point should be calculated
analytically as far as possible. For instance, [ry,¢} dT is
calculated as follows:

/F Yir dl = — (s 1)Ko Br.£) dé

|r,1 { 1 1
i K (B,
mic | (pry B
-/ "Ko(Br) dg}

and so forth, where r, is the value of r when x and z in (4)
coincide with the coordinates of both terminals of the ith
boundary element and K, is the first-order modified
Bessel function of the second kind. The integral in the
right-hand side is divided into two parts: one is the term
with logarithmic singularity and the other is the rest.

Since (12) is satisfied with i =1,2,---, N, we may ex-
press it simply by the following matrix form:

Hé=Gq. (14)

If the boundary conditions are applied to the components
of ¢ or g vectors, (14) can be solved for the unknowns as
simultaneous equations.

If there exist two regions as shown in Fig. 3, we have to
derive the system of equations as in (14) for each region.
These systems are interconnected by the boundary condi-
tions between regions I and 1L, i.e., (¢;; = 191, 191 = — 191
where ¢, for instance, stands for the value of ¢ at the
point P corresponding to P, in region I interfaced with
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Fig. 4. YIG slab shielded with metal plates.

region II. The minus sign before ;;¢; means that the
normal vector on the boundary of region I is opposite in
direction to that of region II.

At the corner, where the normal vector cannot be de-
fined uniquely, two boundary nodes are located in the
vicinity close to it. In practice, these two nodes should be
taken at the vertex, although the unit normal at each node
is the same as that at any other point on each element.

III. NUMERICAL RESULTS AND DISCUSSION

A. A Shielded YIG Slab

Let us consider a closed structure for MSSW prop-
agation: in other words, a YIG slab shielded with metal
plates as shown in Fig. 4. As mentioned in the previous
section, the biasing magnetic field is applied along the
z-axis and the MSSW propagates along the y-axis. In this
case, the region is divided into three homogeneous subre-
gions, namely, a YIG region and two air ones. The follow-
ing boundary conditions are imposed: The normal compo-
nent of the magnetic flux density ¢ vanishes at the metal
surface, and the magnetic potential ¢ and the normal
component of the magnetic flux density ¢ are continuous
at the interface between a YIG slab and an air region. The
width and the thickness of the slab are w and d, respec-
tively. The distance between the surface of the YIG slab
and the metal plate is /. The following numerical values are
used for the computation: gyromagnetic ratio y=2.8
MHz/Oe, the biasing magnetic field H, =251 Qe, and the
saturation magnetization of YIG 4#M, =1760 G.

The dispersion relation of a uniform MSSW mode, whose
amplitude is independent of z, is shown in Fig. 5, with
w=25.0 pm, //A;=3.0, and the number of boundary
nodes N =90, where A, is the wavelength obtained ana-
lytically. The solid line means the analytical solution, and
the symbols ¢ and X indicate the solutions obtained by
the BEM, with d /A, =1.0 and 2.8, respectively. The solu-
tions by the BEM agree very well with the analytical ones.
However, the  symbols do not fit on the solid line as well
as the X symbols do. For example, for frequency f = 3.0
GHz, the o mark deviates from the solid line by about 1.0
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Fig. 6. Relationship between the number of boundary nodes N and the
wavenumber 8. The broken line indicates the analytical solution.

percent, while the X mark does by about 0.06 percent.
Moreover, note that the bigger the wavenumber S, the
larger the discrepancy between the solutions.

Fig. 6 shows the relationship between the number of
boundary nodes N and the wavenumber 8, where the
frequency is kept constant (3.0 GHz) with the parameters
of d/A;=1.0, 2.0, and 2.8. It is clear that the numerical
solutions for 8 by the BEM approach asymptotically to the
analytical solution B8 =0.17605 rad/pm as N increases.
These results show that the numerical accuracy of the BEM
improves as the thickness of YIG slab 4 increases. This
seems to be due to the fact that better uniformity of the
wave amplitude along the z-axis is provided by increasing
d from the point of numerical computations in the BEM.

The magnetic potential distribution of the MSSW for
f=3.0 GHz, d =36 um (d/A,=1.0) is shown in Fig. 7.
Here we increased the number of boundary nodes to 110,
since computation of a potential converges less slowly than
computation of a wavenumber. The solid line and the o
symbols are obtained by the analytical solution and the
BEM, respectively. The results show that both solutions are
" in good agreement

251
, = 4TMg=1760 (G )
LLLLLy =2 W2 ) 11140, X ‘E‘ » Hi = 251 (Oe)
i o  =3.0 (GHz)
D? w.= 50 (um)
riﬂ//lu/m Tt TTTTITITTT d=36 (um)
UY  Metal 10 L= 97.5(pm)
Hi
— Analytical
o  BEM(nodes=110)
05,
-10 -50 -25 0 25 50 10
X (pm)

Fig. 7. Potential distribution along the x-axis for MSSW on the shielded
YIG slab. The potential is normalized such that the maximum value

equals unity.
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Fig. 8. (a) Unshielded YIG slab. (b) Illustration for Marcatili’s ap-
proximate method. Potential in the shaded areas is not taken into
account.

B. An Unshielded YIG Slab

We will investigate the MSSW. which propagates along
the y-axis on an unshielded YIG slab magnetized in the
z-direction, as shown in Fig. 8(a). In this case, the area is
divided into a YIG region and an air one. The continuity
of the magnetic potential ¢ and the normal component of
the magnetic flux density ¢ is imposed at the boundary
between them. It is almost impossible to solve this problem
analytically, so the results by the BEM will be compared
with the solutions by Marcatili’s approximate method [10],
in which the shaded areas illustrated in Fig. &(b) are -
ignored, since the potential is expected to decay very fast in
these areas. The following numerical values are used for
the computation: H,= 500 Oe, w =100 pm, and d = 5000
pm. '

The dispersion relation is shown in Fig. 9. The solid line
indicates the solution by Marcatili’s approximate method,
and the symbols o (N =28)-and X (N = 44) indicate the
solutions by the BEM. It is adequate to choose N =44, as -
is seen from the figure. The X symbols nearly fit on the
solid line. In the range of small wavenumbers, however, a
slight gap occurs between them. When a wavenumber is
small, the potential decays slowly, and hence the shaded
areas in Fig. 8(b) must be taken into account. The effect of
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the shaded areas is revealed more obviously on the mag-
netic potential distribution than it appears on the disper-
sion curve.

Figs. 10 and 11 show the magnetic potential distribu-
tions at z=d /2 along the x-axis and at x = 0 along the
z-axis, respectively. The solid lines indicate the solutions by
Marcatili’s approximate method, and the ¢ symbols mean
the solutions by the BEM with N =44, While both the
results to represent the potential distributions along the
x-axis agree fairly well, those along the z-axis do not show
a good agreement except in the vicinity of the center of the
slab. It seems that the results by the BEM are more
reasonable than those by Marcatili’s approximate method,
because the potential at the edge of the slab (z=0,d)
should not be computed by ignoring the shaded areas; at
the same time, this brings the fact that the solid line (the
potential curve) does not likely vary continuously passing
by around the corner, collating Fig. 10 with Fig. 11.

IV. CONCLUSIONS

The technique for applying the BEM to the MSW prob-
lem has been studied. The boundary integral equation of
the MSW and the fundamental solution of the MSW were
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obtained, and the discrete formulation of this boundary
integral equation was worked out.

In order to show that this technique is available for a
wide range of MSW problems, the dispersion curves and
the potential distributions for the MSSW’s were calculated
for two typical examples: one was a shielded YIG slab as
an example of a closed structure, and the other was an
unshielded YIG slab as an example of an open structure.
Both the cases compared well with the analytical solution
and with Marcatili’s approximate solution, respectively.
The authors conclude that the present technique using the
BEM is very effective and useful for the analysis of the
MSW problems.
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Locking Behavior of a Microwave
Multiple-Device Ladder Oscillator

SHIGEJI NOGI anp KIYOSHI FUKUI, MEMBER, IEEE

Abstract —This paper presents a detailed dlscussmn on the injection-
locking property of a microwave ladder oscillator which is essentially an
array of diode mount-pairs in a rectangular waveguide cavity. It is shown
both analytically and experimentally that the use of a ladder structure is
advantageous both in obtaining a large locking figure of merit (i.e., 20_!)
and in rapidity of the transient response to the PSK signal injection.

I. INTRODUCTION

WING TO THE increasing demands for high-power

J microwave generation, various methods have been
developed to combine output powers of many active de-
vices. They were well reviewed by K. J. Russel [1] in 1979
and more recently by K. Chang and C. Sun [2] in 1983. In
previous papers [3]-[5], the authors proposed a very simple
multiple-device structure, i.e., a microwave ladder oscilla-

. Manuscript received February 22, 1984; revised October 30, 1984. This
work was supported in part by a Grant in Aid for Fundamental Research
from the Ministry of Education, Japan.

The authors are with the Department of Electronics, Okayama Umver-
sity, Okayama 700, Japan.

tor, which is essentially an array of diode mount-pairs in a
rectangular waveguide, and gave a detailed discussion on
the optimum design and successful performance, including
a quantitative description of the power-combining mecha-
nism and a mode-analytical d1scussmn of the stablc de-
sired-mode operation. ' v

The investigation of the behavior under application of a
locking signal must be one of the pertinent problcms of
such multiple-device oscﬂlators, especially in connection
with amplifier application. Kurokawa [6], [7] gave an ana-
lytical study using an eigenfunction approach on two
multiple-device oscillators of an N-way combining. struc-
ture (Rucker’s [8] and Kurokawa and Magalhaes’ [9]). He
showed that the locking range and the condition for stable
locked operation of such multiple-device oscillators can be
given by the expression of the same form as in single-
device oscillators, leaving the effect of the number of
combined active devices upon the external Q untouched.
Experiments on . the TM,, -mode cylindrical cavity

0018-9480,/85,/0300-0253$01.00 ©1985 IEEE



