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Boundary Element Method Approach
Magnetostatic Wave Problems
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AND SUMIO OHKAWA, SENIOR MEMBER, IEEE

Abstract —In this paper, the technique for application of the boundary

element method (BEM) to analysis of magnetostatic waves (MSW’S) is

established. To show tbe availability of the technique, two types of wave-

guides for the MSW are stndie~ one is a wavegrride coustitntirrg a YIG

slab shielded with metaf plates and the other is a wa~eguide consisting of an

unshielded YIG slab. With the former structure the results obtained by the

present technique are compared with the analytical solutions, and with the

latter the BEM is compared with Marcatili’s approximate method since

there is no analytical solution in this case. Those comparisons are per-

formed successfully for both cases.

The paper concludes that the BEM is useful and effective for analysis of

a wide range of MSW problems.
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I. lNTRODUCTION

OF waveguides

Electronics and Com-

to

SEVERAL TYPES

waves (MSWS) have so far been proposed &d solved

for magnetostatic

a~alytically [1]–[3]. Most of them, however, have a simple

geometry; as a matter of fact, we may say that an analyti-

cal solution can be given only for structures of simple

geometry. But from the practical point of view, a numerical

solution which can be applied to arbitrary structures is

required for an analysis of the MSW problems.

The integral equation formulation has proved to be a

powerful tool for obtaining rigorous solutions of electro-

magnetic and acoustic wave problems. The boundary ele-

ment method (BEM) [4]–[6] is often used for the calcula-

tion of scattering and propagation problems. The BEM is

one representative of integral methods and is equivalent to

0018-9480/85 /0300-0248$01 .00 @1985 IEEE
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Fig. 1. Two-dimensional model. H, is a biasing magnetic field.

the moment method with subsectional bases and Dirac

delta functions as testing functions [7]. In this paper, a

general computer program is developed for solving a wide

range of MSW problems.

For the purpose of analysis of waveguides for MSWS,

the authors have established an approach using the BEM.

First, the boundary integral equation for the MSW prob-

lem is derived and the fundamental solution which is

defined as a solution in infinite space corresponding to a

point source is obtained.

Subsequently, we have dispersion curves and magnetic

potential distributions of magnetostatic surface waves

(MSSWS) for two different types of waveguides, i.e., a

shielded YIG slab and an unshielded YIG slab. For the

former structure, a good agreement with the analytical

solution [1], [8], [9] is shown, and for the latter a compari-

son with the solution by Marcatili’s approximate method

[10] is also shown to give reasonable agreement.

II. FORMULATION

When a biasing magnetic field, which is assumed to be

uniform for mathematical simplicity, is applied to yttrium

iron garnet (YIG) along the z-axis, MSW can propagate

along the y-axis, as shown in Fig. 1. Assuming a quasistatic

approximation and that the MSW varies as

@(x, z)e~(’’’-~y), the magnetic potential of the MSW @

satisfies the following equation:

(1)

where p is the diagonal component of tensor permeability

of YIG.

By using Green’s formula, the potential at the arbitrary

point P, inside region A is given as

/(
a+.
--J-. + an)–r+~ax.~.dr(z)

where r is a boundary contour around the region A, n.( n, )

is the x (z) component of the unit normal vector ii to I’,

and ~~ is a fundamental solution, which is

r#=J---Ko3r)r)
2%’@

(3)

following the usual manner [11] for the case of MSSW,

where

r= (x–xz)2+p(z–z, )2 (4)

r

ALx -a:-
r’ ~ r’

A

Fig. 2. Expanded view in the vicinity of P, when ~ is on the boundary.

r, is a indented integral contour, where the distance from P, to I’, is c.

and KO is the zeroth-order modified Bessel function of the

second kind. If P, is on the boundary, (2) leads to the

following boundary integral equation:

where C‘ is given by

~{tan-1(~tan82) -tan-’(fitandl)}. (6)Ci=l_ 1

Here (ll and 6J are angles between the x-axis and the

tangent to the boundary at P,, as illustrated in Fig. 2, and

tan” lx means a normal value, i.e., tan – lx = n ~ + Tan – lx

(Tan - lx; principal value).

Though (5) is a usual expression for the boundary in-

tegral equation, it is inconvenient for putting in the

boundary conditions for the present case. Thus, we use a

technique of adding/subtracting @#@~nX to/from the

integrand in the right-hand side of (5), where K is an

off-diagonal component of tensor permeability. As a result,

we obtain the desirable boundary integral

follows:

c’@(PJ=@dr-@:dr

where

( )
4= p~–KBG nX+un

az z

equation as

(7)

q and q,* mean the normal components of the magnetic

flux density. The boundary conditions are introduced

through the values of @and q along the boundary contour.

The next step is to discretize (7). For this purpose, divide

the boundary r into N elements so that (7) becomes

where the observation point P, coincides with

boundary node. If we apply linear elements to (8),

and z on j th element are expressed as follows:

+($) = +l+J + +2+,+1

4($) = +lq, + +Z(l,+l

x(t) = +1X, + *2X,+1

z($) = +lZJ + +22,+1 I

(8)

the i th

A 4, x?

(9)
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where ~1 and q] are + and q at the j th boundary node,

respectively. I) ~ and +2 are called interpolation functions

which are defined for convenience of numerical integration

as follows:

+1( ’f)=l-t

4’2(’$)=$ 1

in the case where the boundary

the observation point P,, and

+l(t)=(l-t)/2

+2( ’$) = (l+ E)/2 }

(0<$<1) (lo)

element I“ ( j = i) includes

(-1<. $<1) (11)

for an integral along the element I’, which does not include

the point P,. Substituting (9) into (8) leads to

N N

where

Most of the integrations in (13) can be calculated using the

Gaussian integration formula. But an integration where its

path includes an observation point should be calculated

analytically as far as possible. For instance, (r, $ ~+~ d r is

calculated as follows:

and so forth, where r, is the value of r when x and z in (4)

coincide with the coordinates of both terminals of the i th

boundary element and K1 is the first-order modified

Bessel function of the second kind. The integral in the

right-hand side is divided into two parts: one is the term

with logarithmic singularity and the other is the rest.

Since (12) is satisfied with i =1,2, --., N, we may ex-

press it simply by the following matrix form:

H~ = Gq. (14)

If the boundary conditions are applied to the components

of @ or q vectors, (14) can be solved for the unknowns as

simultaneous equations.
If there exist two regions as shown in Fig. 3, we have to

derive the system of equations as in (14) for each region.

These systems are interconnected by the boundary condi-

ti021S between regiC)ns I and II, i.e., 1+11= 11+1, lqll = – llql,

where ~+11, for instance, stands for the value of @ at the

point P corresponding to P, in region I interfaced with

Fig 3. Two-dimensional model consisting of two regions

H,

‘m

2 lx
q=o

Ar
q=o

Siab
q=o

/

z

Fig. 4. YIG slab shielded with metal plates.

region II. The minus sign before ~lql means that the

normal vector on the boundary of region I is opposite in

direction to that of region H.

At the corner, where the normal vector cannot be de-

fined uniquely, two boundary nodes are located in the

vicinity close to it. In practice, these two nodes should be

taken at the vertex, although the unit normal at each node

is the same as that at any other point on each element.

III. NUMERICAL RESULTS AND DISCUSSION

A. A Shielded YIG Slab

Let us consider a closed structure for MSSW prop-

agation: in other words, a YIG slab shielded with metal

plates as shown in Fig. 4. As mentioned in the previous

section, the biasing magnetic field is applied along the

z-axis and the MSSW propagates along the y-axis. In this

case, the region is divided into three homogeneous subre-

gions, namely, a YIG region and two air ones. The follow-

ing boundary conditions are imposed: The normal compo-

nent of the magnetic flux density q vanishes at the metal

surface, and the magnetic potential @ and the normal

component of the magnetic flux density q are continuous

at the interface between a YIG slab and an air region. The

width and the thickness of the slab are w and d, respec-

tively. The distance between the surface of the YIG slab

and the metal plate is 1. The following numerical values are

used for the computation: gyromagnetic ratio y = 2.8

MHz/Oe, the biasing magnetic field H, = 251 Oe, and the

saturation magnetization of YIG 47M, =1760 G.

The dispersion relation of a uniform MSSW mode, whose

amplitude is independent of z, is shown in Fig. 5, with

w = 5.0 pm, l/A. = 3.0, and the number of boundary

nodes N = 90, where A ~ is the wavelength obtained ana-

lytically. The solid line means the analytical solution, and

the symbols o and X indicate the solutions obtained by

the BEM, with d/A o = 1.0 and 2.8, respectively. The solu-

tions by the BEM agree very well with the analytical ones.

However, the o symbols do not fit on the solid line as well

as the x symbols do. For example, for frequency ~ = 3.0

GHz, the o mark deviates from the solid line by about 1.0
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percent, while the x mark does by about 0.06 percent.

Moreover, note that the bigger the wavenumber ~, the

larger the discrepancy between the solutions.

Fig. 6 shows the relationship between the number of

boundary nodes N and the wavenumber .#, where the

frequency is kept constant (3.0 GHz) with the parameters

of d/A. =1.0, 2.0, and 2.8. It is clear that the numerical

solutions for )3 by the BEM approach asymptotically to the

analytical solution /3 = 0.17605 rad/pm as N increases.

These results show that the numerical accuracy of the BEM

improves as the thickness of YIG slab d increases. This

seems to be due to the fact that better uniformity of the

wave amplitude along the z-axis is provided by increasing

d from the point of numerical computations in the BEM.

The magnetic potential distribution of the MSSW for

~= 3.0 GHz, d =36 ~m (d/A. =1.0) is shown in Fig. 7.
Here we increased the number of boundary nodes to 110,

since computation of a potential converges less slowly than

computation of a wavenumber. The solid line and the o

symbols are obtained by the analytical solution and the
BEM, respectively. The results show that both solutions are

in good agreement.

251

> 41r~= 1760( G )
Hi. 251 [0.z)

z
~ f = 3.0 (Gtlz)

~
w , 5.0 (pm )
d=36 (pm)

1.0- I . 97.5( pm)

— Andyt,d

BE M(nodes= 11

0 2,5 5.0 10
X (pm)

Fig. 7. Potentiaf distribution atong the x-axis for MSSW on the shielded

YIG slab. The potentiat is normalized such that the maximum value
equals unity.

(a) (b)

Fig. 8. (a) Unshielded YIG slab. (b) Illustration for
proximate method. Potential in the shaded areas is

account.

B. An unshielded YIG Slab

Marcatili’s ap-

not taken into

We will investigate the MSSW which propagates along

the y-axis on an ‘unshielded YIG slab magnetized in the

z-direction, as shown in Fig. 8(a). In this case, the area is

divided into a YIG region and an air one. The continuity

of the magnetic potential @ and the normal component of

the magnetic flux density q is imposed at the boundary

between them. It is almost impossible to solve this problem

analytically, so the results by the BEM will be compared

with- the solutions by Marcatili’s approximate method [10],

in which the shaded areas illustrated in Fig. 8(b) are

ignored, since the potential is expected to decay very fast in

these areas. The following numerical values are used for

the computation: Hi= 500 Oe, w =100 pm, and d = 5000

pm.

The dispersion relation is shown in Fig. 9. The solid line

indicates ~he solution by Marcatili’s ap~roximate method,

and the symbols o (N= 28) and X (N= 44) indicate the

solutions ‘by the BEM. It is adequate to choose N = 44, as

is seen from the figure. The x symbols nearly fit on the

solid line. In the range of small wavenumbers, however, a

slight gap occurs between them. When a wavenumber is

small, the potential decays slowly, and hence the shaded

areas in Fig. 8(b) must be taken into account. The effect of
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the shaded areas is revealed more obviously on the mag-

netic potential distribution than it appears on the disper-

sion curve.

Figs. 10 and 11 show the magnetic potential distribu-

tions at z = d/2 along the x-axis and at x = O along the

z-axis, respectively. The solid lines indicate the solutions by

Marcatili’s approximate method, and the o symbols mean

the solutions by the BEM with N = 44. While both the

results to represent the potential distributions along the

x-axis agree fairly well, those along the z-axis do not show

a good agreement except in the vicinity of the center of the
slab. It seems that the results by the BEM are more

reasonable than those by Marcatili’s approximate method,

because the potential at the edge of the slab (z= O, d)

should not be computed by ignoring the shaded areas; at

the same time, this brings the fact that the solid line (the

potential curve) does not likely vary continuously passing

by around the corner, collating Fig. 10 with Fig. 11.

IV. CONCLUSIONS

The technique for applying the BEM to the MSW prob-

lem has been studied. The boundary integral equation of

the MSW and the fundamental solution of the MSW were

-’4 i

~~

x H1.500(Oe)
z.- f . 35 (GHz)
z
a

w . 100 (pm )

z
d . 5000( pm)

L 4nM5= 1760( G )

d

1.
. BEM(nod.?s. L4)

,2 — Ref [93
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Fig. 11. Potentiaf distribution at x = O along the z-axis for MSSW on

the unshielded YIG slab. The potentiaf is normalized such that the
maximum value all through the area equals unity.

obtained, and the discrete formulation of this boundary

integral equation was worked out.

In order to show that this technique is available for a

wide range of MSW problems, the dispersion curves and

the potential distributions for the MSSW’S were calculated

for two typical examples: one was a shielded YIG slab as

an example of a closed structure, and the other was an

unshielded YIG slab as an example of an open structure.

Both the cases compared well with the analytical solution

and with Marcatili’s approximate solution, respectively.

The authors conclude that the present technique using the

BEM is very effective and useful for the analysis of the

MSW problems.
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Behavior of a Microwave
Multiple-Device Ladder Oscillator

SHIGEJI NOGI AND KIYOSHI FUKUI, MEMBER, IEEE

,4bstrszct —This paper presents a detailed discussion on the iniection-

Iocking property of a mi&owave ladder oscillator which is essentially an

array of diode mount-pairs in a rectangnlkr waveguide cavity. It is shown

both anafyticafly and experimentally that the use of a ladder structure is

advantageous both in obtaining a large locking figure of merit (i.e., 2 Q~l )

and in rapidity of the transient response to the PSK signal iujection.

I. INTRODUCTION

o WING TO THE increasing demands for high-power

microwave generation, various methods have been

developed to combine output powers of many active de-

vices. They were well reviewed by K. J. Russel [1] in 1979

and more recently by K. Chang and C. Sun [2] in 1983. In

previous papers [3]–[5], the authors proposed a very simple

multiple-device structure, i.e., a microwave ladder oscilla-

Manuscript received February 22, 1984; revised October 30, 1984. This

work was supported in part by a Grapt in Aid for Fundamental Research

from the Ministry of Education, Japan.

The authors are with the Department of Electronics, Okayama Univer-

sity, Okayama 700, Japan.

tor, which is essentially an array of diode mount-pairs in a

rectangular waveguide, and gave a detailed discussion on

the optimum design and successful performance, including

a quantitative description of the power-combining mechan-

ism and a mode-analytical discussion of the stable de-

sired-mode operation.

The investigation of the behavior under application of a

locking si~al must be one of the pertinent problems of

such multiple-device oscillators, especially in connection

with amplifier application. Kurokawa (6], [7] gave an ana-

lytical study using an eigenfunction approaclh on two

multiple-device oscillators of an N-way combining struc-

ture (Rucker’s [8] and Kurokawa and Magalhaes’ [9]). He

showed that the locking range and the condition for stable

locked operation of such multiple-device oscillators can be
given by the expression of the same form as in single-

device oscillators, leaving the effect of the number of

combined active devices upon the external Q untouched.

Experiments on the TM .. O-mode cylindrical cavity

0018-9480/85 /0300-0253$01 .00 01985 IEEE


